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EXECUTIVE SUMMARY

The problem of determining the best stationing plan for military units can be
modeled as a capacitated facility location problem with sole sourcing and multiple
resource categories. The capacitated facility location problem accomplishes two
goals. It determines which facilities to open and how to allocate customer demand
among the open facilities. For unit stationing this equates to which bases to retain and
which units to assign to bases. Sole sourcing requires that all customer demand be
allocated to one facility. For the base stationing application this requirement means
that a unit is stationed at a single base. In capacitated facility location problems with
multiple resource categories the customers require more than one type of resource
from the facilities. For unit stationing problems the resources include those that are
consumed by the presence of the unit, such as barracks and motor pools, and those
that are shared by units, such as ranges. _

The most common techniques for solving models like the capacitated facility
location problem with sole sourcing are branch and bound methods. Some problem
instances of the capacitated facility location model with sole sourcing require many
hours to solve using branch and bound. For some instances it is not practical to solve
the problem optimally, but it is possible to find a feasible solution and a lower bound
on the cost of the optimal solution. Decomposition algorithms are another common
technique for solving capacitated facility location problems with sole sourcing. These
techniques decompose a large or difficult problem into a series of easier problems.
Recent research has unified the two predominant decomposition approaches, Benders
decomposition and Lagrangean relaxation, into a decomposition framework called
cross decomposition. Computational experience has shown that cross decomposition
can efficiently solve the capacitated facility location problem. This research does not,
however, provide computational experience with the capacitated facility location

problem with sole sourcing.




This thesis implements two cross decomposition algorithms for the capacitated
facility location problem with sole sourcing and compares these decomposition
algorithms with branch and bound methods. These algorithms are implemented using
a commercial solver on a high speed digital computer. For some problems tested,
cross decomposition obtains better solutions in less time; however, cross
decomposition does not always perform better than branch and bound due to the time
required to obtain the cross decomposition bound that is theoretically superior to
other decompositon bounds. The favorable results obtained using cross

decomposition indicate that the method is worthy of further research.
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I. INTRODUCTION

This thesis implements two cross decomposition algorithms [Holmberg 1994] for a
capacitated facility location problem with sole sourcing, compares these solution methods
with direct solution using branch and bound, and applies a decomposition algorithm to a unit
stationing model [Dell et. al. 1994]. This research evaluates the ability of a cross
decomposition algorithm to determine lower bounds for the optimal objective function value
of the capacitated facility location problem with sole sourcing and recommends a method to
obtain feasible solutions from the cross decomposition algorithm.

The remainder of this chapter introduces the stationing model, the cross
decomposition algorithm and the research approach. Chapter II describes the capacitated
facility location problem and the cross decomposition method. Chapter III describes the
application of two cross decomposition algorithms to the capacitated facility location problem
with sole sourcing. Chapter IV presents and analyzes the test results. Chapter V offers
conclusions and recommendations for further study.

A. BACKGROUND

1. Optimal Stationing of Units at Bases (OSUB)

The Defense Base Closure and Realignment Act of 1990 [BRAC 1990]
specifies a process by which major Department of Defense installations can be closed or
realigned. This law and subsequent legislative amendments require that installations be
evaluated primarily by military value and cost. To assist the Army with stationing decisions,
the OSUB (Optimal Stationing of Units to Bases) model [Dell ez. al. 1994] was developed
at the Naval Postgraduate School. This model is an elastic mixed integer programming model
with two criteria: military value and cost. OSUB has recommended closure and realignment
for Army maneuver and training bases and stationing Army units. OSUB is currently
implemented with the General Algebraic Modeling System, GAMS, [Brooke et. al. 1992] and
solved using the integer linear program solver XA [Sunset Technology 1987]. OSUB is a
capacitated facility location problem with sole sourcing and some special constraints. The

OSUB model formulation is presented below.




Indices:

Data:

*

*

*

*

i,i’ bases;
J units;

k resources (includes total maneuver acres, contiguous maneuver acres
(ca), housing, facilities and ranges).

S, set of units that are currently stationed at base 7;
futil, fixed utility of base i;
feost, fixed cost associated with keeping base 7 open;

vutil,; the difference in variable utility when unit j moves to base 7 (a
positive difference is a desirable change);

veost,; the difference in variable cost when unit j moves to base 7 (a
positive difference is a higher cost),

pen,, penalty per unit deviation from resource £ at base / (any deviation not
associated with a military value objective has a penalty of zero);

co,;, operating cost associated with deviating from resource £ at base 7 (any
deviation not associated with the cost objective has a cost of zero);

cc, construction cost associated with deviating from resource k at base 7
(any deviation not associated with a construction cost has a cost of zero);

cap;, capacity of resource k at base / (current stationed unit use is
subtracted from the capacity for all k¥ # ca);

r,, resource k utilization by unit J;
cm,; cost to move unit j to base 7;
maxm the maximum movement cost;

maxc the maximum one-time realignment cost.



Binary Variables:

* close;=1if base i is closed and 0 if it remains open;

* move,;= 1if unit j moves to base 7. (This variable is defined only for units
J not already assigned to base i.)

Continuous Variables:

e, deviation from resource capacity £ at base i.

Formulation:
(1) maximize Z = qutzl -(1-close, )+ZZvutil -move; —ZZpenlk ik
i jeS,
(2) minimize Z, z feost; -(1-close; )+ZZvcost -move; +ZZc0, €k
i jeS,
subject to:

@) > move, <1 VijeS
i'#i

(4) move; ; <(1-close;) Vi, j €S,

) Zmovei,_j >close; Vi, je€S,;

i'#i

(6) er’k -move; ; — Zer‘k ~move,, ; <cap;, +e¢;,; Vik#ca
e, jeS; i'#i

() 1, -move, ;<cap;, +e;,, Vi,j&S, k=ca

®) ZZ cm, ; -move; ; < maxm

&) Zchi’k -€; , < maxc

(10) move; e{Ol} Vi,jeS; close; €{0,1} Vi e, 20 Vik

These objectives and constraints respectively:
(1) express a comparative measure of military value for units assigned to bases,

(2) express the cost of unit stationing,




(3) ensure a unit moves at most once or not at all,

(4) & (5) ensure that a base closes only if no new units are stationed there and all old
units move to another base,

(6) capacitate housing, total maneuver acres, facilities and ranges or measure excess
demand for such,

(7) capacitate contiguous maneuver acres or measure excess demand for such,

(8) limit the maximum unit movement cost, and

(9) limit the one-time construction cost for realignment.

2. Cross Decomposition

Van Roy [1983, 1986] develops a cross decomposition algorithm that unifies
Benders decomposition and Lagrangean relaxation and applies it to the capacitated facility
location problem. This method simultaneously isolates and exploits the primal and the dual
structure of the problem by successively solving a transportation problem and a simple plant
location problem. Van Roy presents evidence that this algorithm is superior to several other
methods and shows that an implementation of the algorithm solves sample problems about
ten times faster than other methods available at that time. Van Roy also claims that in all
problems tested his method obtains in just a few decomposition iterations tight lower and
upper bounds that differ by no more than 0.5%.

Holmberg [1990, 1994] generalizes the concept of cross decomposition to
pure integer problems and studies the lower bounds on the optimal objective function value
of pure integer programming problems. He proves that generalized Benders decomposition
and generalized cross decomposition yield the best lower bound for pure integer problems.
He also shows that while either ordinary Benders decomposition or Lagrangean relaxation
may yield the best lower bound for a particular problem, cross decomposition can
automatically yield the best of these bounds. He formulates the decomposition problems
required to apply generalized cross decomposition to a capacitated facility location problem

with sole sourcing. He provides no computational evidence of the efficiency of these

methods.



B. OVERVIEW
This thesis presents three accomplishments.
1. Implementing Cross Decomposition
Two cross decomposition algorithms are implemented for the capacitated
facility location problem with sole sourcing. The algorithms are coded in C on an IBM
System 6000 Model 590H using the CPLEX Callable Library. CPLEX [1994] is an
optimization tool for solving linear and mixed integer optimization problems. The CPLEX
Callable Library is an object-oriented C library. CPLEX allows the user to build applications
which solve, modify, and interpret the results of linear and mixed integer programs. To code
the algorithms we develop techniques to successively generate and solve the decomposition
problems.
2. Analysis of Results
The cross decomposition algorithms are tested and analyzed. We perform
computational tests using the decomposition algorithms and the CPLEX Mixed Integer Solver
on problems of various sizes. We compare the results and characterize the performance of
the decomposition algorithms. This analysis evaluates the capability of the cross
decomposition algorithms to determine lower bounds on the optimal objective function value
for capacitated facility location problems with sole sourcing. We also analyze the suitability
of the algorithms to obtain feasible solutions using the facility configurations and lower
bounds from the decomposition algorithms.
3. Application to Unit Stationing Models
A decomposition approach is selected and used on a unit stationing model
similar to the OSUB model. The unit stationing model is simple extension of the capacitated

facility location problem with sole sourcing.







II. CAPACITATED FACILITY LOCATION AND CROSS DECOMPOSITION

A. CAPACITATED FACILITY LOCATION PROBLEMS

The CFLP describes a wide variety of planning problems. Applications beyond
capacitated facility location include: lot sizing decisions in production planning;
telecommunications network design; machine replacement; vehicle routing when capacities
are not equal [Cornuejols et. al. 1991]; the stochastic transportation problem; and discrete

network design [Holmberg 1990]. The mixed integer formulation of the CFLP is presented

below.
Indices:
* | facilities;
* j demand points.
Data:
* £ fixed cost to operate facility 7;
* ¢, ;cost to supply all demand at j by facility
* d;total demand at .
Binary Variables:

* y. = 1if facility 7 is open and 0 if it is closed.

Continuous Variables:

* x,  the proportion of the total demand at j (d) provided by facility 7.




Formulation:

minimize Zf,--yﬁZci,j-xi'j
p
¥ x "

(CELP)

subject to:

(CFLP 1) in,j=1 [/1}.] Y
i
i

(CFLP3) xi’iji [V‘-’j] Vi,j

(CFLP 4) X;j >0 Vi,j y; €{0,1} Vi

The objective is to minimize total cost, and contains two distinct sets of decision
variables. The first set of binary decision variables (y;) determine which facilities to open.
The second set of continuous decision variables (x; ) allocate customer demand to the open
facilities. The variables in brackets are the corresponding dual variables for the given set of
constraints. Constraints (CFLP 1) ensure that all demand is met. Constraints (CFLP 2)
enforce the capacity limits for the facilities. Constraints (CFLP 3) are variable upper bounds
on the allocation of demand. This third set of constraints is redundant in binary variables, but
yields a much tighter linear programming relaxation [Van Roy 1986].

B. SOLVING THE CFLP
1. Benders Decomposition
Benders decomposition (e.g., [Nemhauser & Wolsey 1988] and [Magnanti &
Wong 1990]) is a primal solution method. It isolates special structure in the problem by
fixing primal variables. Benders decomposition is an exact method that solves the CFLP
optimally by iterating between the primal subproblem and the primal master problem
described below. Appendix A contains a derivation of the master problem and subproblem.

The description below provides implementation details.



a. The Primal Subproblem (PS)

®s)

minimize Zﬁ Vi +Zci,j "X
i ij
x J

subject to:

(*s 1) inﬁl [4;1 V)

i

J

(PS3) x; <y Ivij]l Vij

Ps4) x"J 20 Vi,j

The primal subproblem is the linear program obtained when the facility
configuration is fixed at y in the CFLP where y,indicates that y,is fixed at either one or zero.

PS is a restriction of the CFLP that consequently provides an upper bound on its optimal

objective function value. The objective function value of the dual of PS is
Z’?'j —Zsi Vit 'ng "Vij
j i ij ;
To maintain consistency with the objective function of the CFLP, we add the same constant,

(the fixed facility cost), that is added to PS and obtain

P BADWIESIBRESFRN
i j i,j )

i

By duality, the value of the above expression for the optimal solution to PS is the maximum

feasible value for the given facility configuration. This expression provides the basis for a




primal cut. The optimal objective function value of the primal master problem must be less

than or equal to
) () ()]
YIS YR DR
j i j

for any set of feasible facility configurations (where the superscript () on the dual variables

is the iteration number).
b. The Primal Master Problem (PM)

minimize p

@M
Y.p

subject to:

@M1 pzz,?,(;)+Z(ﬁ—p§')-si—§:v§f})~yi vt
J i J

®M2) Zs,--yi ZZdj
i j
(PM3) y; €{0,1} Vi

The primal master problem is obtained by adding a primal cut (PM 1)
each time the primal subproblem is solved. PM fixes the facility location variables for the
primal subproblem. PM provides a feasible facility configuration because constraint (PM 2)
ensures total supply meets total demand.

When using only a subset of all possible cuts (a relaxation), PM
provides a lower bound on the optimal objective function value of the CFLP. Since PS

determines the maximum value of

PIHEDNAITEEEY R HBY
j i J

10




for the facility configuration provided by PM, the optimal objective function value of the
CFLP is identified when the objective function value of PS equals the objective function value
of PM.
2. Lagrangean Relaxation

Lagrangean relaxation [e.g., Nemhauser and Wolsey 1988] is a dual solution
method. It isolates special structure in the problem by moving complicating constraints into
the objective function and penalizing complicating constraint infeasibility with a Lagrangean
multiplier. Lagrangean relaxation solves a relaxation of the CFLP by iterating between the
subproblem and the master problem described below.

a The Dual Subproblem (DS)

©9) tnimize Zﬁ'yi+zci,j'xi,j+z Zd;'x.-,j-sryi Hy
i

X,y i ij j

subject to:

®s1) in’j =1 Vj
i

©s2) ZS,.-y,. ZZdj
i J

@3 X <y, Vij

sy X;; >0 Vi, j y; €{0,1} Vi

The dual subproblem is the Lagrangean relaxation of the CFLP with
respect to the total supply constraint (CFLP 2) and the addition of a constraint (DS 2) that
ensures total supply meets total demand. DS is a relaxation of the CFLP that consequently
provides a lower bound on its optimal objective function value. DS provides for any set of

dual values fixed facility locations (y;) and customer assignments (x; ).
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b. The Dual Master Problem (DM)

maximize &
[1n%))
1N

subject to:

® @) 1) ®
; ij i\
oM  u4;20 Vi

, The dual master problem is obtained by adding a dual cut (DM 1) each
time the dual subproblem is solved. With all possible cuts, DM is the Lagrangean dual. DM
fixes the dual variables for the dual subproblem. DM provides an upper bound on the optimal
objective function value of the Lagrangean relaxation of the CFLP because it is a relaxation
of the Lagrangean dual.
3. Cross Decomposition
Cross decomposition unifies Benders decomposition and Lagrangean
relaxation. Figure 1 below motivates the cross decomposition method. Cross decomposition
iterates in the subproblem phase between the restricted primal subproblem and the relaxed
dual subproblem described above. These problems successively provide an upper and lower
bound on the optimal objective function value of the CFLP. These problems may provide
tight bounds in the subproblem phase, but neither convergence, nor monotonic improvement
is guaranteed. The convergence tests described below are used to determine when the
subproblems fail to make progress toward an optimal solution. When a convergence test fails,
cross decomposition solves a master problem that is formed using the cuts generated in the

subproblem phase and then continues this phase with the next subproblem.

12




Cross Decomposition

Primal
Subproblem

v

Dual
Subproblem

Primal Master
Dual Master Problem
Problem

Primal
Subproblem

Figure 1.

Cross Decomposition iterates between the primal and dual subproblems in the "subproblem

phase." It solves a primal or dual master problem when a convergence test fails and then restarts

the subproblem phase. The algorithm terminates when the objective function values of selected

problems converge to a lower bound on the optimal objective function value.

a

J

Zﬂ'(;) + Z fi- /‘?) 8= Z Vftj) -y; < Upper Bound
i J

The Primal Convergence Test

The primal convergence test uses the following cuts:

-

If these cuts are satisfied for all 7 then cross decomposition continues by solving the primal
subproblem. The primal convergence test uses the cuts in the primal master problem to
determine if the upper bound can be improved. If any cut 7 is not satisfied, a master problem

is solved. The primal convergence test is a necessary condition for improving the current

13




upper bound on the optimal objective function value. The primal convergence test is

sufficient to show that either: the primal subproblem can improve the upper bound; or the

primal subproblem can generate a new cut for the primal master problem [Holmberg 1990].
b. The Dual Convergence Test

The dual convergence test uses the following cuts:

Q) ® ® ®| -~
E‘,ci’j-xi,]-+§:fi-yi +_S_, E di-x;;—$;-¥; (*H;2Lower Bound
ij i i .

If these cuts are all satisfied then cross decomposition continues by solving the dual
subproblem. The dual convergence test uses the cuts in the dual master problem to determine
if the lower bound can be improved. If any of these cuts are not satisfied, cross
decomposition solves a master problem. The dual convergence test is a necessary condition
for improving the current lower bound on the optimal objective function. The dual
convergence test is sufficient to show that either: the dual subproblem can improve the lower
bound; or the dual subproblem can generate a new cut for the dual master problem

[Holmberg 1990].
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L. CAPACITATED FACILITY LOCATION WITH SOLE SOURCING

The capacitated facility location problem with sole sourcing (CFLPSS) is an important
variant of the CFLP model. In this problem all customer demand must be assigned to one
facility and the second set of decision variables (x, ) are also binary. The CFLPSS is a pure
integer linear program with significantly more binary variables than the related CFLP. To

apply cross decomposition to CFLPSS we first reformulate the problem as follows:

minimize
Y X i ij
subject to:

( .
Dix;=1 [A;] V)

ssn W: < i

Xi; <Y, vi;1 Vij

ss2 X! 1%

14

Vi

X j €{0,1} Vj

Dosiyizy d; (6]
i J

y; €{0,1} Vi

ss3) Y

This formulation partitions the constraints into three sets: those that include only the
facility location decisions (¥), those that include only customer assignment decisions (X)), and
those that involve both types of decisions (#). Cross decomposition exploits this structure.
Note that the constraint in CFLP that limits the assignment of customer demand to the
available supply of open facilities (CFLP 2) has been replaced in CFLPSS by a constraint in
X, that limits customer demand to the available supply of the facility. Thus the variable upper

bounds (now in W) are no longer redundant.
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A. GCD APPLIED TO CFLPSS (CX)

Holmberg [1994] describes the problems and the general procedures to apply cross
decomposition to CFLPSS. We adopt his notation with only minor modifications to label and
classify the various decomposition problems. In this section we formulate the problems
associated with generalized cross decomposition (GCD) and describe our implementation of
GCD. We highlight where appropriate the implementation details not provided by Holmberg
[1990, 1994]. In the next section we formulate the problems associated with one of the six
alternate ordinary cross decomposition algorithms (CD6) described but not implemented by
Holmberg and describe our implementation of that decomposition.

1. Lagrangean Relaxation

Our implementation of Lagrangean Relaxation (DW3) iterates between the
subproblem and master problem described below. (Holmberg [1994] describes the
subproblems and master problems for three possible dual decomposition algorithms that he
labels Danzig-Wolfe decomposition.) When applied to CFLPSS this algorithm converges to
the Lagrangean relaxation of the constraints in the set .

a The Dual Subproblem (SSDS)

maximize Zg,-(x) 4,v) +g(y) v)- le
(SSDS) ; ;
Y, x

Where for fixed dual values we solve the following subproblems:

minimize D N

g(}’)(i") = Z f; Zvi’j yi
y - I

¢ssps1y DSY: <

D8z

subject to: i j
y; €{0,1} Vi

16




~ 3
g(x)(ft P)= minimize Z(ci,j +A;HV; )X
L xeX, '’

(ssps2) DSX;: 5 > Vi
J

subject to:

X j €{0,1} Vj

The dual subproblem SSDS is the Lagrangean relaxation of the
CFLPSS relative to the constraints in /. This relaxation creates a set of independent binary
knapsack problems. DSY selects facilities to open. DSX; assigns customers to facility i
without regard to either the open facilities selected by DSY or the assignments made to other
facilities. This relaxed problem provides a lower bound and a set of cuts for the master

problem.
b. The Dual Master Problem (SSDM)

maximize ) 5, +6%-) 1,

(SSDM)
v,A ! J

subject to:

@) @) ) .
(SSDM 1) 5?) < Z(xi,j G XA X v ) Vi
J

@) )
(SSDM 2) P < Zf, D7 "Zyi ’ Vij Vb
i ij
ssDM3) Vi 2 0 Vij

The dual master problem SSDM is obtained by adding dual cuts (¢, and

t,) each time the respective dual subproblem is solved. This problem provides an upper
bound and dual values for the subproblem. To ensure that SSDM is initially bounded, we
include a set of initial cuts corresponding to all facilities open and all customers assigned to

each facility. Holmberg [1990, 1994] does not suggest this.
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2. Generalized Benders Decomposition
Generalized Benders decomposition (GBD) iterates between the master
problem and subproblem described below. When applied to CFLPSS, it converges to the
convexification with respect to the assignment variables (CX). (The convexification with
respect to a set of integer variables is the optimal solution over the feasible region defined by
the convex hull of the integer feasible extreme points in the set.) This is the best lower bound
that we can obtain using decomposition [Holmberg 1994].
a The Primal Subproblem (PSL)

minimize gfx)(l,V)—ZlﬁZfi-&,-
J i

X

(PsL)

subject to:

ety V20 Vi,j

Where for fixed dual values we solve:

; 3

minimize ) (¢;;+4;+V; ;) X;;
i

g2, 9=

xeX;
@®sL2) PSDS;: | s Vi
subjectto: < J
X; j e{0,1} Vj

/

The primal subproblem, PSL, is the Lagrangean relaxation of CFLPSS
with respect to the constraints /¥ after the facility locations have been fixed. Since this
problem is a nonlinear mixed integer program, we do not solve it directly. It may be solved
approximately using subgradient optimization, or optimally using Danzig-Wolfe
decomposition. The master and subproblems used to solve PSL optimally are given below

followed by brief description of the solution method.
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(1)  Danzig-Wolfe Master Problem to solve PSL (DML)
maximize Zaﬁ") +69 - Zﬂj

oML
v, A ! I

subject to:
6)) 2 -
RN EE PR
i ij

k k k .
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(DML 3) Vi’j20 Vi, j

(2)  Danzig-Wolfe Subproblem to Solve PSL (PSDS))

N

minimize Z(c,-’j + AV )X

xeX,

g2, 0=

PSDS; : |

Vi
subjectto: ¢ J

x;; €{01} Vj
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b. Solving PSL

To solve PSL, we iterate between the Danzig-Wolfe subproblem,
PSDS, and the Danzig-Wolfe master problem, DML. PSDS; is identical to DSX; from the
dual subproblem (SSDM). DML is SSDM with the y cuts (SSDM 2) aggregated into a single
constraint (DML 1). Holmberg [1994] provides these problems, but not the implementation

details that follow in this section. These problems converge when

g2 6% Vi
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To synthesize dual information for closed facilities, we use the following rule.

) ) 0 ifc;+4;20

If y, =0thenv;; = - T
’ Ic,., itA; | otherwise

This rule ensures that (DML 2) is satisfied for the closed facilities. When DML is unbounded

the facility choices are infeasible and we add the following constraint to PMCX and SSDS:

Dy, 21 where I={i|y,=1}.
iel
Holmberg assumes feasibility for CFLPSS when the constraints are partitioned into the set
X and the set Y. If this assumption does not hold the above constraint is required to achieve
feasibility. We retain the cuts in DML that were found each time PSL was solved since these
are valid at every iteration between PSL and PMCX (below).
c The Primal Master Problem (PMCX)

minimize p
Py

subject to:

t 13 t t
(PMCX 1) pZ Z(ci’j + 1(1) + ng.]?).xf,j) —ZE(J) +Z(.f; -
i,j j ‘

PIEEDI

eMcxy  y; €Yiq @ J
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t
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The primal master problem PMCX is the convexification with respect
to the assignment variables (¥, ). It is formed by adding a primal cut each time the primal
subproblem is solved. It contains constraint (PMCX 2) to ensure that enough facilities are
open to meet total demand. This is a necessary condition for primal feasibility. This is not

a sufficient condition for primal feasibility; therefore, additional constraints are required. We
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detect infeasibility when DML is unbounded in PSL and add a constraint (described in section
b. above) to achieve feasibility.
3. Generalized Cross Decomposition

Generalized cross decomposition (GCD) iterates between PSL and SSDS until
a convergence test fails or these problems converge in objective value. GCD converges to
the convexification with respect to the assignment variables (CX). This is the better of the
two lower bounds provided by DW3 and GBD if they differ. If the GBD lower bound
exceeds the DW3 upper bound, we switch to GBD to find the better lower bound. The
convergence tests for GCD are described below.

a The Primal Convergence Test (CTPCX)

CTPCX uses the following cuts:

Z{c + ].(') + v(') } @ Zl(') + Z fi— ZV(') -y; < Upper Bound

ij
If all of these cuts are satisfied then GCD continues by solving PSL. CTPCX uses the cuts
in PMCX to determine if PSL can improve the upper bound. If any cut is not satisfied we
solve PMCX. CTPCX also fails if PMCX has not been solved for a fixed number of
iterations.
b. The Dual Convergence Test (SSCTD)
SSCTD uses the following cuts:

Zc” X, j +Zf }’, Z{ ) ft)} +Z{Z ¢ _ }/’iszowerBound

ij
If all cuts are satisfied then GCD continues by solving SSDS. SSCTD uses the cuts in SSDM
to determine if SSDS can improve the lower bound. If any cut is not satisfied we solve
SSDM.
B. CROSS DECOMPOSITION APPLIED TO CFLPSS (LX)
We can relax the integer restrictions on the customer assignment variables and obtain

another decomposition that converges to the same objective value as the linear programming

21




relaxation of CFLPSS with respect to the assignment variables. This form of decomposition
is similar to the decomposition described by Van Roy [1986]. In this form we replace the
primal master problem PMCX with PMLX and the primal subproblem PSL with PSLX. We
also replace the primal convergence test CTPCX with CTPLX. The dual problems and the
dual convergence test remain unchanged. These new primal problems and primal
convergence test are detailed below.
1. Benders Decomposition on LX

Benders decomposition on LX (BD6) iterates between the following
subproblem and master problem and converges to the linear programming relaxation of the
assignment variables (LX).

a. The Primal Subproblem (PSLX)

Cminimize ) f B+ ) %y
@sL%) i ij

X

subject to:

Yox =1 (41 Vi

@®sixy W i
x; <y lvi;1 Vi
@®six2) X j Vi

x;20 Vj

The primal subproblem (PSLX) is the linear programming relaxation
of the original problem (CFLPSS) with respect to the assignment variables after the facility

locations have been fixed. It provides an upper bound and a set of dual values to form the

cut for the master problem (below).
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b. The Primal Master Problem (PMLX)

minimize P
(PMLX)
y

subject to:
() ® !
eMIX1) P2 le ‘*zsi‘wi “*'z f;“zvfj) ¥Vt
j i i J
2532 )4,
Y. i j

y; €{0,1} Vi

(PMLX 2)

The primal master problem is obtained by adding a cut (PMLX 1) each
time the PSLX is solved. It fixes the facility location variables for the next decomposition
problem, and provides a lower bound.

2. Cross Decomposition on LX
Cross decomposition on LX (CD6) iterates between PSLX and SSDS in the
subproblem phase until a convergence test fails or these problems converge in objective value.
The new convergence test for GCD and procedures for objective convergence are described
below.
a The Primal Convergence Test (CTPLX)
CTPLX uses the following cuts:

Zﬂ(;) - Zsi 0% + Z fi- Z Vftj) -y; < Upper Bound
j i i j .
Ifthese cuts are all satisfied then CD6 continues by solving PSLX. CTPLX uses the cuts in
PMLX to determine if the upper bound can be improved. PMLX is solved if any cut is not

satisfied or if PMLX has not been solved for a fixed number of iterations.
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b. Convergence to a Bound ,
CD6 can converge to the better of the bounds provided by BD6 and
DW3, even if it is not known which is better in advance. If during cross decomposition the
current BD6 lower bound exceeds the current DW3 upper bound, then cross decomposition
switches to BD6. Likewise, if the current DW3 lower bound exceeds the current BD6 upper
bound, then the algorithm switches to DW3.
C. DECOMPOSITION APPLIED TO A STATIONING MODEL
In this section we describe the application of a decomposition algorithm to solve a

simplified unit stationing model. That model is given below.

s minimize Zf,--yi+Zci’j-xi’j
i ij
subject to:
Mox;=1 (4] V)
wsmMy W: 4 i |
xSy vl Vi

Ddx;<sy; lo,] VkeR
j

(USM2) Xi: 4 d],k 'Xi’j Ssl'k [ﬂt,j,k] Vj,k ERI Vi

x;; €{0,1} Vj

Zsi,k'yizzdj,k [6,] VkeR,
wsM3) Y. q j

| y; {0} Vi

This unit stationing model (USM) is an extension of the CFLPSS model that includes
multiple resources. These resources are separated into two categories. One category (R,)
is resources that are consumed by the presence of the unit such as motor pools and billets.

The second category (R,) is resources such as ranges and maneuver acres that are required
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by the unit, but are shared for the most part with other units. This simplified model captures
the essential aspects of OSUB [Dell e. al. 1994]. Note that this model has the same decision
variables as the CFLPSS model with the same number of customers and facilities.

We do not solve the model directly; instead we satisfy the constraints associated with
the second resource category (R,) by variable reduction. That is, we fix the assignment
variable to zero for any unit and facility pair that is not feasible due to a shortage of one of
these resources.

1. Benders Decomposition

Benders decomposition on LX (BDLX) for the unit stationing model iterates
between the following subproblem and master problem and converges to the linear
programming relaxation of the assignment variables (LX). This decomposition is similar to
BD6.

a. The Primal Subproblem (USMPS)

minimize

(USM PSLX) Zfi-)?l-+2ci’j-x‘.'j
x i ij
subject to:

Y ox=1 [4;1 V)
wsmpsixy Wi i
X; S)‘ii [vi’j] Vi, j

Ddx;<s, lo,] VkeR
Jj
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x,; =0 if 3k eR|(s,;/d; ) <1
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The primal subproblem is the linear programming relaxation of USM
after the facility location variables have been fixed. Note that the relaxed assignment variable

is zero if the facility can not provide enough of a resource in the second resource category to
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the unit. USMPS provides an upper bound on LX and a set of dual variables that form the

cut for the master problem (below).
b. The Primal Master Problem (USMPM)

minimize
(USM PMLX)
Py
subject to:
® ) ®
(USM PMLX 1) pZZf,-')’,'Jrzﬂj —Zvi,j')’i‘ Za’i,k‘si,k vt
i j i,j ikeR,
Zs‘,'k.yizzdj,k [6,] VkeR,
usmMpMLX2) Y: i i

y; €{0,1} Vi

The primal master problem is formed by adding a cut (USM PMLX
1) each time the primal subproblem is solved. Note that the constraints in USM PMLX 2
require that the open facilities provide enough of each resource in the first category to meet
the total demand. This is a necessary, but not a sufficient condition for feasibility. USMPM

provides a lower bound and a set of facility locations for the primal subproblem.
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IV. COMPUTATIONAL EXPERIENCE

A. DESCRIPTION OF THE PROBLEMS

‘Beasley [1990] provides a library of optimization problems that include capacitated
facility location problems such as those used by Van Roy [1984] to test cross decomposition;
however, many of these problems are infeasible for the CFLP with sole sourcing and the
remaining problems are directly solved rapidly by CPLEX [1994]. We therefore generate
more difficult random test problems of various sizes.

Our problem generation scheme is to specify a range of values for the data and to then
randomly select the data value from a uniform distribution over this range. We first specify
the number of customers and facilities (the problem name follows the convention, e.g., 10C20
is ten facilities and twenty customers) and the minimum and maximum customer demand.
The minimum supply for each facility is equal to the average demand times the average
number of customers per facility. The maximum supply is equal to three times the minimum
supply. Arbitrarily, the minimum fixed cost for each facility is equal to the supply, the
maximum fixed cost is equal to twice the supply, the minimum variable cost for each customer
and facility is equal to the customer demand, and the maximum variable cost is equal to twice
the customer demand.

B. RESULTS AND ANALYSIS

Tables 1 to 14 below present results from applying the decomposition algorithms
described in the previous chapter to our test problems. Each table contains a measure of the
problem size (number of facilities and customers), the results for each algorithm and some
general comments about the problem. The results for each algorithm include the time needed
in processor (CPU) seconds on an IBM System 6000 Model 590H, the lower bound
determined, the number of times that the various problems (SSDM in the DM column, SSDS
in the DS column, PMLX and PMCX in the PM column, and PSLX and PSL in the PS
column) are solved and remarks about the algorithm's performance. We attempt to run each
algorithm until it converges to within 0.01 (the upper bound minus the lower bound all
divided by the lower bound) of the best lower bound obtained by the algorithm. We truncate
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any algorithm that fails to converge after 7,200 CPU seconds or 250 iterations of any problem
or 1,000 iterations of PSL.

We use CPLEX [1994] to obtain the optimal objective function value of the linear
programming (LP) relaxation of the problem. The lower bounds obtained by the
decomposition algorithm may be slightly less than the lower bound from the LP relaxation due
to the convergence and truncation criteria for the decomposition algorithms described above.
After a sufficient number of iterations, the decomposition algorithms will determine bounds
that are equal to or better than the objective function value of the LP relaxation.

We also attempt to solve the problems with the CPLEX [1994] mixed integer solver
to provide a basis for comparison. This commercial solver employs state of the art branch
and bound techniques that include preprocessing, heuristic rounding to obtain the first integer
solution, cut-off and shortcut techniques, clique and cover cuts, and numerous other features.
We report the objective function value of the optimal solution or the best feasible solution for
each problem. When the optimal solution is not known, we report the quality of the branch

and bound solution in the remarks.
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Problem: 10C20 Facilities: 10 Customers: 20
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 2,589.4
BD6 0.52 2,628.6 6 7
CD6 1.77 2,619.2 3 11 1 12 PMLX & PSLX converge
DW3 8.01 2,619.3 31 31
GCD 27291 2,643.0 5 13 6 14 (405 iterations in PSL)
PMCX & PSL converge
GBD 148.12 2,660.0 8 9 (265 iterations in PSL)
CPLEX 3.84 2,662.0 optimal solution

Table 1. BD6 converges most rapidly and determines a good lower bound. CD6 performs well, but does
not determine the best possible bound. GBD determines the best bound. GBD and GCD converge in a
reasonable number of iterations, but their time performance is poor. PSL determines an upper bound in GBD
and GCD that is equal to the optimal objective function value. All five decomposition algorithms find bounds
that are better than the LP relaxation.

Problem: 10C35 Facilities: 10 Customers: 35
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 4,625.6
BD6 1.00 4,699.0 8 9
CDé6 6.81 4,699.4 5 22 2 23 PMLX & PSLX converge
DW3 53.62 4,657.3 56 56
GCD 2,396.6 4,661.5 5 14 7 15 (839 iterations in PSL)
PMCX & PSL converge
GBD 2,589.21 4,662.8 15 15 (882 iterations in PSL)
CPLEX 8.56 4,705.0 optimal solution

Table 2. BD6 converges most rapidly and determines a good lower bound. CD6 performs well and

determines the best lower bound. GBD and GCD converge in a reasonable number of iterations, but their time
performance is poor. PSL determines an upper bound in GBD and GCD that is equal to the optimal objective
value. All five decomposition algorithms find bounds that are better than the LP relaxation. CPLEX branch

and bound performs well.
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Problem: 15C30 Facilities: 15 Customers: 30
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 3,803.7
BD6 64.59 3,845.4 68 69
CDé6 76.13 3,685.6 20 80 5 81 SSDS & PSLX converge
DW3 51.68 3,691.0 45 45
GCD 5,263.52 3,614.0 16 38 17 39 (996 iterations in PSL)
0.034 convergence gap
GBD 4,613.95 3,641.0 31 32 (989 iterations in PSL)
0.076 convergence gap
CPLEX 607.10 3,916.0 optimal solution

Table 3. BD6 determines the best lower bound and is the only algorithm to improve the bound from the

linear programming relaxation. CD6 does not obtain the same bound because PSLX and SSDS converge to

within 0.01 first. DW3 converges to a bound in the least amount of time. PSL determines an upper bound in

GBD and GCD that is equal to the optimal objective function value. GBD and GCD terminate before the

problems converge to within 0.01 of the bound.

Problem: 15CS0 Facilities: 15 Customers: 50
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 6,441.0
BD6 9.22 6,428.0 19 20
CD6 12837 6,416.6 15 94 b 95 SSDM & PMILX converge
DW3 297.88 6,395.1 74 74
CPLEX 6,091.50 6,960.0 solution within 0.072 of optimal

Table 4. BD6 converges rapidly to the best lower bound among the decomposition algorithms. None of the

decomposition algorithms determine a bound that is better than the LP relaxation. This indicates that a

convergence criteria of 0.01 truncates the algorithms too soon for this problem. GBD and GCD fail to converge
or even provide reasonable bounds. CPLEX branch and bound obtains a feasible solution that is within 0.072

of optimal.
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Problem: 20C40 Facilities: 20 Customers: 40
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 46188
BD6 944.52 4,591.1 121 122
CDé6 244.65 4,546.9 20 148 7 149 SSDM & SSDS converge
DwW3 172.41 4,548.0 57 57
GCD 7,452.5 4,414.0 9 21 9 22 (635 iterations in PSL)
0.072 convergence gap
GBD 7.413.55 4,440.5 28 29 (620 iterations in PSL)
0.060 convergence gap
CPLEX 15,639.35 4,746.0 solution within 0.027 of optimal

Table 5. BD6 determines the best lower bound. CD6 and DW3 converge more rapidly to a weaker bound.

No algorithm obtains a bound that is better than the LP relaxation of the problem. GBD and GCD terminate
before they converge to within 0.01 of the bound.

Problem: 20C70 Facilities: 20 Customers: 70
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 8,280.9
BDé6 370.57 8,323.6 87 88
CD6 1,170.21 8,209.5 34 148 7 149 SSDS & SSDM converge
DW3 1,599.18 8,199.1 104 104
CPLEX 9,784.0 8,730.0 solution within 0.046 of optimal

Table 6. BD6 converges rapidly to the best lower bound among the decomposition algorithms that converge.

DW3 converges to the worse bound and requires more time that BD6 or CD6. CD6 converges to the same
bound as DW3. If CD6 switches to BD6 when SSDS and SSDM converge instead of halting, it can detect the
difference in the bounds and converge to the better of the two.
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Problem: 25C30

Facilities: 25

Customers: 30

Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 5,427.2
BD6 23.97 5,404.9 23 24
CD6 40.68 5,391.4 11 37 1 38 SSDM & SSDS converge
DW3 876 5,405.0 38 38
GCD 3290.85 5,410.3 16 33 12 34 (226 iterations in PSL)
SSDM & SSDS converge
GBD 7284.57 5,406.0 100 101 (454 iterations in PSL)
0.063 convergence gap
CPLEX 4,865.53 6,366.0 solution within 0.146 of optimal

Table 7. GCD determines the best lower bound. BD6, CD6 and DW3 converge more rapidly to a similar

bound. No algorithm obtains a bound that is better than the LP relaxation of the problem. GBD halts before they
converge to within 0.01 of bound. Neither GBD nor GCD determines a good lower bound.

Problem: 25C45 Facilities: 25 Customers: 45
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 9,141.5
BD6 0.45 9,217.3 1 2
CDé6 201.72 9,297.7 23 24 0 2 SSDM & SSDS converge
DW3 94.14 9,315.1 52 52
GCD 4,553.20 9,483.5 5 10 3 11 (212 iterations in PSL)
PMCX & SSDM converge
GBD 7,194.01 9,572.4 24 25 (428 iterations in PSL)
CPLEX 8,452.92 10,503.0 solution within 0.128 of optimal

Table 8. GBD determines the best lower bound. GCD converges to a similar bound in much less time. Every

algorithm obtains a bound that is better than the LP relaxation of the problem. CD6 determines after two iterations

which decomposition algorithm converges to the better bound and switches to DW3.
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Problem: 25C60 Facilities: 25 Customers: 60
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 10,894.9
BDé6 132 10,835.0 2 3
CD6 233 10,805.7 0 2 0 3 SSDS & PSLX converge
DW3 743.53 10,850.5 77 7
GCD 7,418.13 10,901.0 7 14 7 15 (287 iterations in PSL)
0.019 convergence gap
GBD 7,568.60 10,927.0 15 16 (287 iterations in PSL)
0.017 convergence gap
CPLEX 3,916.95 12,312.0 solution within 0.126 of optimal

Table 9. GBD and GCD determine the best lower bounds, but do not converge. DW3 converges to a better

bound in less time. BD6 and CD6 converge very rapidly to similar bounds.

Problem: 30C35 Facilities: 30 Customers: 35
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 7,059.1
BDé6 0.73 7,0533 1 2
CDé6 1.49 7,082.7 0 1 0 2 SSDS & PSLX converge
DW3 656.60 7,135.7 41 41
GCD 3,556.45 7,125.0 12 24 0 25 (236 iterations in PSL)
SSDS & SSDM converge
GBD 7,360.97 7,197.0 8s 86 (467 iterations in PSL)
0.10 convergence gap
CPLEX 7396.27 8,253.0 solution within 0.115 of optimal

Table 10. GBD determines the best lower bound, but does not converge. GCD converges to a different bound

in much less time. DW?3 converges to the same bound as GCD in even less time. BD6 and CD6 are extremely
fast, but converge to weaker bounds.
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Problem: 30CS0 Facilities: 30 Customers: 50
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 10,458.1
BDé6 0.68 10,481.7 1 2
CDé6 219.98 10,669.4 24 25 0 2 SSDS & SSDM converge
DW3 664.26 10,700.4 57 57
GCD 6,011.74 10,826.8 6 12 3 13 (285 iterations in PSL)
PMCX & SSDM converge
GBD 7,473.08 10,839.8 13 14 (362 iterations in PSL)
0.037 convergence gap
CPLEX 7,200.21 11,527.0 solution within 0.082 of optimal

Table 11. GBD determines the best lower bound, but does not converge. GCD converges to the same bound

in slightly less time. DW3 converges to a good bound in much less time, but CD6 obtains the same bound even

faster. CD6 again detects the best algorithm and switches to DW3 after two iterations. BD6 is extremely fast,

but converges to the weakest bound.

Problem: 30C75 Facilities: 30 Customers: 75
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 13,651.0
BD6 3.93 13,539.7 3 4
CDé6 43.89 13,583.5 4 16 0 17 SSDS & PSLX converge
DW3 1,478.32 13,586.6 92 92
CPLEX 7,200.24 15,379.0 solution within 0.123 of optimal

Table 12. DW3, CD6 and BD6 all converge to similar bounds. BD6 converges rapidly. CD6 performs well.

DW3 does not perform as well. GBD and GCD fail to obtain usable bounds.
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Problem: 40CS50 Facilities: 40 Customers: 50
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 9,386.7
BD6 6.74 9,314.9 4 5
CD6 136.00 9,342.1 6 41 1 42 PMLX & PSLX converge
DW3 678.99 9,375.6 60 60
GCD 8,598.28 9,324.0 3 7 2 8 (230 iterations in PSL)
0.074 convergence gap
GBD 7,434.07 9,332.0 7 8 (227 iterations in PSL)
0.073 convergence gap
CPLEX 7,200.20 10,867.0 solution within 0.147 of optimal

Table 13. DW?3 determines the best lower bound. BD6 and CD6 converge more rapidly converged to a similar

bound. GCD and GBD do not converge.

Problem: 40C75 Facilities: 40 Customers: 75
Iterations Remarks
Algorithm Time Bound
DM DS PM PS
LP Relaxation 14,335.6
BDé6 1.84 14321.2 1 2
CDé6 24.39 14,354.7 (] 1 0 2 SSDS & PSLX converge
DW3 4016.75 14,396.8 83 83
GCD 9,434.05 14,446.6 1 2 0 3 (145 iterations in PSL)
0.063 convergence gap
GBD 9,649.32 14,447.6 2 3 (148 iterations in PSL)
0.082 convergence gap
CPLEX 7,200.34 16,119.0 solution within 0.114 of optimal

Table 14. GBD and GCD determine the best lower bound, but do not converge. DW3 converges to a good

bound, but is also very slow. CD6 and BD6 both obtain reasonable bounds very rapidly.

35




BD6 converges to a lower bound rapidly for all problems. DW3 is too slow to
converge to a lower bound for some problems. DW3 performs poorly for larger problems
and problems with smaller convergence tolerances because later iterations between SSDS and
SSDM required significantly more time to solve than previous iterations.

CD6 converges to a lower bound quickly for most problems. It converges rapidly
enough that it is possible to alter the halting criteria to obtain a better bound. For example,
CD6 can continue for some number of iterations beyond the convergence of PSLX and
PMLX and possibly determine whether DW3 will converge to a better bound.

GBD and GCD usually converge to a lower bound too slowly, but they often do
produce good bounds in a reasonable number of iterations. GBD and GCD solve PSL by
Danzig-Wolfe decomposition at every iteration and this requires too much time.

C. USING THE LOWER BOUND

Tables 15 to 18 below present results from using the decomposition problems to
produce a feasible solution to the CFLPSS for some of the previous problems. To obtain this
solution we use the CPLEX branch and bound algorithm to solve the problem obtained by
fixing the facility decisions to the configuration last determined by the decomposition
algorithm and setting the lower cut-off to the lower bound determined by the decomposition
algorithm. For each algorithm the table contains the added time in seconds to obtain the
solution, the total time in seconds, the objective function value, and the quality of the solution

measured against the lower bound determined by that decomposition algorithm.
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Problem: 10C20

Facilities: 10

Customers: 20

Time Solution
Algorithm | Added Total Value Quality Remarks
BD6 037 0.89 2,791 0.062
CDs 0.46 2.23 2,841 0.085
DW3 0.28 8.59 2,789 0.065
GCD 0.10 273.01 2,724 0.031
GBD 0.10 148.22 2,724 0.024
CPLEX 3.84 2,662.0 0.000

Table 15. All algorithms determine feasible solutions with objective function values that

are within at least 0.085 of the optimal objective function value in significantly less time
than branch and bound.

Problem: 10C3S Facilities: 10 Customers: 35
Time Solution
Algorithm | Added Total Value Quality Remarks

BD6 337.57 338.57 4,822 0.026 2nd problem
CDé6 0.81 7.62 4,840 0.030
DW3 0.78 54.40 4,787 0.028
GCD 0.77 2,397.37 4,903 0.051
GBD 1.55 2,590.76 5,015 0.076

CPLEX 8.56 4,705 0.000

Table 16. All algorithms determine feasible solutions. The first problem solved by BD6

1s not feasible. CD6 determines a solutions with an objective function value that are within

at least 0.03 of the optimal objective function value in less time than branch and bound.
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Problem: 15C30 Facilities: 15 Customers: 30
Time Solution
Algorithm | Added Total Value Quality Remarks
BDé6 8.13 72.72 3,969 0.030
CD6 5.46 81.59 4,106 0.114
DW3 85.34 137.02 4,051 0.097
CPLEX 607.61 3,916 0.000

Table 17. GBD and GCD did not determine feasible solutions. All other algorithms did

determine feasible solutions faster than branch and bound, but the quality of these solutions

is not always good.

Problem: 15C50 Facilities: 15 Customers: 50
Time Solution
Algorithm | Added Total Value Quality Remarks
BDé6 3,783.29 3,792.51 6,606 0.028 6th problem
CDé6 33.75 162.12 6,590 0.027
DW3 2,867.98 3,165.86 6,651 0.040 4th problem
CPLEX 6,091.50 6,960 0.072

Table 18. All three algorithms determine feasible solutions that were better than the best

known branch and bound solution. CD6 performed significantly better than all other
algorithms finding a solution with an optimal objective function value within 0.027 of

optimal in less than three minutes.

This procedure to find a feasible solution for the CFLPSS does not always work well
for the larger problems in this study. Computational testing indicates that it is often necessary
to solve the problem several times with different facility configurations to find a feasible
solution and in many cases no feasible solution is found. A better approach may be to check

for feasibility each time customers are assigned to facilities during the decomposition

algorithm and retain feasible facility configurations.
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D. A GRAPHICAL EXAMPLE OF CONVERGENCE

In this section we graphically compare the convergence of cross decomposition (CD6)
with Benders decomposition (BD6) and Danzig-Wolfe decomposition (DW3) for problem
20C40 shown in Table 5. For the problems tested the convergence characteristics of these
decomposition methods on this problem are typical. In figures two through four below, the
y-axis is labeled with objective function value and the x-axis is labeled with the CPU time at
the completion of each iteration of the decomposition algorithm. We plot the best bound

determined by the decomposition problem at each iteration.
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Figure 2. We solve PMLX and PSLX at every iteration. PSLX rapidly determines a tight upper bound

and does not improve this bound after the second iteration. PMLX gathers cuts and improves the lower
bound steadily at every iteration. BD6 halts when the objective function value of PMLX is within 0.01 of the
upper bound determined by PSLX.
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Figure 3. DW3 solves SSDM and SSDS at every iteration. These problems do not provide good bounds

initially, but after thirty-five iterations without progress they begin to converge. Note that the time to solve
each iteration increases markedly as the decomposition algorithm progresses. The first thirty iterations

require less than half as much time as the next ten iterations. The last sixteen iterations account for over forty

percent of the total solution time. SSDS determines a good upper bound after forty iterations and only
improves slightly after that point. SSDM gathers cuts and improves steadily after forty iterations. DW3

halts when the objective function value of SSDM is within 0.01 of the best upper bound determined by

SSDS.
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Figure 4. CD6 solves SSDS and PSLX at every iteration. These decomposition problems determine
moderately good bounds initially, but do not converge rapidly. PSLX never improves the upper bound after
the second iteration. When a convergence test fails, a master problem is solved. SSDM is solved more

| frequently than PMLX, but this problem never provides a good upper bound. PMLX provides a good lower

bound when first solved on the 12th iteration. CD$6 halts when the objective function value of PMLX
converges with the upper bound determined by PSLX.

It is possible that the lower bound determined by DW3 is superior to the bound
determined by CD6 for this problem. To determine if this is the case we would iterate

between SSDM and SSDS after PSLX and PMLX converged until either they converged or
the bound from PMLX exceeded the bound from SSDM.
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E. COMPUATATIONAL EXPERIENCE WITH USM
1. Description of Problems

We generate random test problems of various sizes for the unit stationing
problem. The problem generation scheme is similar to that described previously for CFLPSS
with slight modifications for multiple resources. We first specify the number of units and
facilities (the naming convention is e.g., 24U36 is 24 facilities and 36 units) and the minimum
and maximum unit demand. The minimum supply of resources of type R, (those resources
not shared by units) for each facility is equal to the average demand times the average number
of units per facility. The maximum supply of resources of type R, is equal to three times the
minimum supply. The minimum supply of resources of type R, (those resources shared by
units) for each facility is equal to the minimum demand. The maximum supply of resources
of type R, is equal to the maximum demand. Arbitrarily, the minimum fixed cost for each
facility is equal to the maximum supply among the resource categories, the maximum fixed
cost is equal to twice the minimum fixed cost, the minimum variable cost for each unit and
facility is equal to the unit demand, and the maximum variable cost is equal to twice the unit
demand.

2. Results

Table 19 below presents results from the Benders decomposition algorithm
(BD6) applied to the unit stationing model, the branch and bound algorithm applied to the
problem obtained by fixing the facility configuration to that of the last iteration of BD6, the
branch and bound algorithm applied to the unit stationing model (USM), and the simplex
algorithm applied to the linear programming relaxation of the unit stationing model. For each
problem the table contains for BD6 the total time in seconds, the lower bound, and the
number of iterations for BD6 to converge; for the problem to assign units to the facilities
selected by BD6 the total time in seconds and the objective function value; for branch and
bound the total time in seconds and the objective function value; and for the linear

programming relaxation the objective function value.
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Problem BD6 Assign CPLEX LP
Time | Bound | Iterations | Time | Solution | Time | Solution | Rel2xation
18024 1930 4,873 53 520.0 5,826 1,800 5,585 4,682.5
18U36 442.10 8,215 232 580.7 9,330 1,800 9,818 7,737.9
24U36 48.11 6,574 41 - - 1,800 7,571 6,543.9
24U48 99.21 9,651.8 43 1303.8 10,809 1,800 11,774 9,419.5
— indicates that no feasible integer solution is found.

Table 19. BD6 converges rapidly and determines a good lower bound for all problems
except 18U36 . BD6 finds bounds for all problems that are better than the LP relaxation. BD6
finds feasible integer solutions for all problems except 24U36. All CPLEX branch and bound

solutions are the best known integer solution.

These results indicate that a Benders decomposition may be a good alternative to

branch and bound for finding good feasible solutions to USM.
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V. CONCLUSIONS

A. PERFORMANCE OF THE DECOMPOSITION ALGORITHMS

Benders decomposition (BD6) is the best algorithm, especially for larger problems,
because it converges to a lower bound most rapidly. Lagrangean relaxation (DW3) performs
well for some small problems, but later iterations of this algorithm require significantly more
time to solve than the earlier iterations. Cross decomposition (CD6) is a good algorithm for
medium sized problems. It converges rapidly enough that it may be possible to continue the
algorithm until it is clear whether BD6 or DW3 will converge to the better bound.

Generalized Benders decomposition (GBD) and generalized cross decomposition
(GCD) are too slow, but they should not be abandoned completely. They are guaranteed to
converge to the best possible lower bound and they do converge in a reasonable number of
iterations. The primary problem with GCD and GBD is the poor performance of PSL. The
next section discusses techniques to address this shortcoming.
B. TOPICS FOR FURTHER RESEARCH

1. Determining Upper Bounds

The decomposition algorithms presented in this thesis find lower bounds on

the optimal objective function value. In the process they may also identify a feasible set of
facilities. The lower bound is useful to judge the quality of a feasible solution. Fixing the
facility variables determined in the last iteration of the decomposition algorithm and solving
the resulting problem is typically an efficient method to obtain a feasible solution. This
method fails if the set of facilities does not contain a feasible set of customer assignments.
Other methods for obtain upper bounds and feasible solutions should be explored.

2. Improving the Efficiency of the Algorithms

It is possible to improve the efficiency of the current implementations in

several ways. For the decomposition algorithms considered in this thesis there are techniques
to strengthen the cuts currently determined in the subproblems. Application of these
techniques would reduce the number of iterations required to achieve convergence and may

prove computationaly attractive.
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As implemented for this thesis, GBD and GCD are not viable solution
methods. However, they are theoretically very attractive because they converge to the best
bound that can be obtained from the decomposition algorithms we considered. In GBD and
GCD the most expensive problem is PSL. Three alternate solution approaches for PSL
should be considered.

(1)  Use a heuristic method (such as solving a relaxed problem and rounding to an
integer solution) to solve PSDS,; until PSDS; and DML near convergence, then
switch to an optimal solution method.

(2)  Solve the binary knapsack problems in PSL with a pseudo-polynomial
algorithm (such as dynamic programming). These methods are often superior
to branch and bound.

(3) Solve PSL using subgradient optimization instead of Danzig-Wolfe
decomposition.

3. Implementing the Stationing Model
The motivation for this thesis research was the unit stationing model. The

Benders decomposition method for the stationing model outlined in this thesis can be
extended to cross decomposition by implementing a Lagrangean relaxation algorithm.
Computational experiments should be performed with these decomposition algorithms on a
larger set of problems.

4. Improving the Experimental Design
The computational results reported in this thesis are for a limited number of

instances of each problem size and for one set of parameters that generate the problems. It
would be better to test the algorithms against a random sample of problem instances for each
problem size. It would also be useful to generate problems with different sets of parameters.
This may lead to additional work to establish a set of metrics for CFLP problems and to

quantify the difficulty of problems in terms of these metrics.
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APPENDIX. BENDERS DECOMPOSITION

In this section we derive the Benders master problem for the capacitated facility
location problem (CFLP). In Benders decomposition we identify complicating variables that
can be fixed to produce a simpler problem. For the CFLP the binary variables (y) associated
with the facility location decisions complicate the problem. With the y variables fixed the
CFLP is a simple linear program: a bipartite network with gains that provides a minimum
cost assignment of customer demand to facilities.

The problem below is a reformulation of the CFLP with an outer optimization over

the complicating variables (y), and an inner optimization over the simple variables (x).

(minimize )
X Zci’j.xi'j
]
inimize subject to: Zx,-,j=1 (4;1 Y

Zfi')’i*‘* i (

Jj

xi,iji [Vi’j] Vi, j

{ xi,j.>_0 Vi, j
subject to: Zsi-inZdj
i i

y; €l01} Vi

The added constraint in the outer optimization ensures that the facility configuration is

feasible.
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With the facility configuration fixed we replace the inner optimization with its linear

programming dual:

fmaximize le —Zsi Vit Hi —Z)’i Vij
j b

i

Ap,v
minimize

Zfi')’i 9 ’
Y i

subjectto: A, —d;-p;—v;;<¢;; [x;] Vi
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#;20 Vi v, ;20 Vi,j
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J

i
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Let

T= {t | (1(‘), ,u(’), v(')) is a (dual) feasible extreme point solution}

be the index set of all (dual) feasible extreme point solutions of the inner optimization problem

above. Then the previous problem can be written as

y
subject to: Zs,- y; 2 Zdi
i i

y; {01} Vi
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This problem is equivalent to the original problem since the dual of the inner optimization
problem attains its optimal solution at one of a finite number of extreme points. (The dual
problem is bounded if the primal problem is feasible.) The problem above can also be written

as the mixed integer program below.

minimize
P
Py

subject to: pZZl(;)+Z f,--—s,.-;zf')—ng; y; VeeT
, , ;

j i
PRI
; j

y; €{0,1} Vi

The Benders master problem is a relaxation of this problem obtained when only a subset of
the constraints associated with the index set T are known. The Benders master problem
provides a feasible facility configuration and a lower bound on the optimal objective function
value of the original problem.

The set T is usually large and only a subset of these constraints are binding in the
optimal solution. The strategy adopted by Benders decomposition is to solve a relaxed
master problem that contains a subset of these constraints to obtain a feasible facility
configuration and to then solve another problem, the Benders subproblem, to determine if a
lower cost facility configuration exists. If the facility configuration from the relaxed Benders
master problem is not optimal, the subproblem provides a new constraint that is violated by
this facility configuration. This new constraint, called a Benders cut, is one of the constraints
in the index set T that is not already in the master problem. The problem below is the

Benders subproblem.
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This problem is identical to the inner optimization problem in the reformulation of the CFLP.
The Benders subproblem is a restriction of the CFLP obtained by fixing the facility locations.
The optimal solution to the Benders subproblem provides a set of dual variable values that
form a Benders cut and an upper bound on the optimal objective function value of the original
problem. The objective function value of the Benders subproblem is equal to the optimal
solution of the original problem when the facility configuration is optimal.

Benders decomposition starts with a feasible facility configuration and iterates
between the Benders subproblem and the Benders master problem. At each iteration, if the
facility configuration is not optimal, the subproblem provides a new Benders cut. This cut
is a violated constraint from the constraints associated with the index set 7. In the extreme
case, after a finite number of iterations the subproblem produces all of the constraints
associated with the index set T and the master problem is equivalent to the original problem.
Thus, after a finite number of iterations the master problem and the subproblem must

converge in objective function value to the optimal objective function value of the original

problem (CFLP).
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